
Architecting an Extensible Digital Repository
Anoop Kumar, Ranjani Saigal

Academic Technology
Tufts University

16 Dearborn Road
Medford, MA 02155

{anoop.kumar,ranjani.saigal}@t
ufts.edu

Robert Chavez
Digital Collections and Archives

Tufts University
Tisch Library-35 Professors

Medford, MA 02155

Robert.chavez@tufts.edu

Nikolai Schwertner
Department of Computer Science

Tufts University
161 College Ave.

Medford Ma, 02155

nikolai.schwertner@tufts.edu

ABSTRACT
The Digital Collection and Archives (DCA) in partnership with
Academic Technology (AT) at Tufts University developed a
digital library solution for long-term storage and integration of
existing digital collections, like Perseus, TUSK, Bolles and
Artifact. In this paper, we describe the Tufts Digital Library
(TDL) architecture. TDL is an extensible, modular, flexible and
scalable architecture that uses FEDORA at its core. The
extensible nature of the TDL architecture allows for seamless
integration of collections that may be developed in the future,
while leveraging the extensive tools that are available as part of
individual digital library applications at Tufts. We describe the
functionality and implementation details of the individual
components of TDL. Two applications that have successfully
interfaced with TDL are presented. We conclude with some
remarks about the future development of TDL.

Categories and Subject Descriptors
H.3.7 [Digital Libraries]: Collection, Dissemination, Standards,
System Issues, User Issues.

General Terms
Management, Performance, Design, Security.

Keywords
Digital Library, preservation, FEDORA, VUE.

1. Introduction

During the past decade colleges and universities have witnessed
an exponential growth in digital information available for
teaching and learning. There are many collections of digital
objects including images, texts, audios and videos that have great
value in a diverse set of fields. As the quantity of information
continues to increase and these collections expand, there is need
for a repository that can provide appropriate storage and access to

all these valuable material in a flexible and extensible manner for
the foreseeable future. This need has led many organizations to
select a digital library solution that can assimilate the current
collections and accommodate new materials as they become
available.

The Digital Collection and Archives (DCA) in partnership with
Academic Technology (AT) at Tufts University has developed a
digital library solution that provides for long-term storage and
integration of existing digital collections, while leveraging the
extensive tools developed by individual digital library projects at
Tufts. The Digital Library system developed to serve the needs at
Tufts builds on and extends successful models that are currently
in vogue in the digital library world. This paper describes the
architecture of the Tufts Digital Library (TDL) which is designed
to allow assimilation and interoperability of existing Tufts digital
libraries while allowing new creators of digital materials to add
their content and write new applications for using and managing
the material.

The paper describes two applications – Visual Understanding
Environment (VUE), a concept mapping application and Tufts
Digital Library Search that successfully interface with this
architecture to use the content of the repository.

2. Related Work

The architecture for TDL incorporates the concepts described in
the emerging standards for trusted digital repositories [5], and
complies with the Reference Model for an Open Archival
Information System (OAIS) functional and information models
for archival information systems [6]. On a practical level this
means that we have applied the principles of the “trusted digital
repository” and OAIS guidelines in the arrangement of our system
architecture [6], matching requirements to system services.

The format to assign persistent IDs or Uniform Resource Names
(URN) to objects across digital collections uses the standard
specified in the RFCs on URNs [8-11]. OCLC’s Persistent
Uniform Resource Locators (PURL) was used as a basis to create
a “Naming Service” that creates and resolves URNs..

The implementation of FEDORA [1] by University of Virginia
forms the core of the TDL architecture. It provides the
“plumbing” or framework for all the components and the services
in the architecture. Havard’s LDI, [12] uses a model that clearly
separates the collections infrastructure, access infrastructure and
common services to support their large and unusually

decentralized library system. This modular approach has been
used a basis to develop the TDL component architecture. We also
used the ideas of interoperability, scalability and digital
preservation that form the core of the Making of America II [13]
project.

The abstract model that represents digital objects is drawn from
Lagoze’s Warwick framework [3] and Kahn and Wilensky’s
Framework for Distributed Digital Objects[20]. The model was
developed taking into consideration the Digital Repository (DR)
Interface proposed by MIT’s Open Knowledge Initiative (OKI)
[7]. The objects in the repository can be easily accessed and
managed by applications that support the OKI-DR interface.

TDL uses the Dublin Core[21] Metadata set for storing fields such
as author, title, subject, etc. Administrative metadata, gathered
through the METS XML file is used for processing FEDORA
Objects. Metadata is also acquired and managed as
“Datastreams” - a concept that is proposed in the FEDORA object
model.

The TDL search application uses Lucene [21], which is part of the
Jakarta project. It is an open source search engine that provides
full text based search, metadata search and advanced search
features.

3. Designing the Tufts Digital Library

3.1 Need for a New Architecture
Three major discipline specific digital library applications have
been developed at Tufts University. Persues, [15] a digital library
in the area of classics has over a million objects and receives
about 8 million page hits a month. The collection includes
multilingual marked up texts, images audios and videos. The
Tufts University Science Knowledgebase or TUSK [17] is a
repository of materials specific to the health sciences field. It is
widely used by the Medical, Veterinary and Dental schools for
teaching a variety of courses. Artifact is a collection of about
2500 images that is used to teach courses in Art History [18].
Tufts also has two substantial collections of digital materials - the
Bolles Collection [18] which is a collection of some unique
historical maps of London and Crime and Punishment [19], which
a collection of videos, images and cases used for simulations by
Political Science faculty. Table 1. provides details about these
collections.

Table 1. Digital Libraries at Tufts

Digital
Libraries

Size Description

Perseus 50 million words The subset of Perseus
Project Classics
collection data that the
Tufts Digital library is
working with is
composed primarily of
highly structured TEI
encoded XML texts of
many types, including
various forms of Lexica,
Grammars,
Encyclopedias, ancient
and modern language
texts.

Bolles
Collection

13 million words,
25,000 images,
geospatial datasets
and multimedia
objects

The Bolles collection
contains highly structured
TEI encoded XML texts,
PDF documents, high
resolution TIFF images,
QuickTime Virtual
Reality files.

TUSK 15,000 documents,
125 courses
(approximately)

Tufts University Science
Knowledgebase (TUSK)
contains full-text syllabi,
digital slide images,
lecture recordings (audio
and video) and notes,
exam questions,
evaluation forms,
bibliographies linked to
full-text articles, and
other resources made
available by the faculty
of Tufts University.

Artifact 2500 images Artifact contains over
2500 images and
corresponding data, with
links to the Art History
slide collection database
containing 120,000
entries. It integrates on-
demand viewing and
searching with Internet-
based adaptations of
traditional learning aids,
such as flashcards, for
review and study

Crime and
Punishment

400 images and
videos.

The repository contains
images in gif format and
videos in mov format to
support simulations used
in Political Science
courses.

Perseus, Artifact and TUSK have an extensive set of tools
associated with them that allow users to access content in a
manner that is most suited to their discipline-specific needs. The
collections are continuously expanding adding content in a variety
of formats. The current architecture of these libraries is not built
to accommodate such expansion. There is a need for development
of a new digital library architecture that is modular, scalable and
economically viable. The architecture should allow for
persistence of objects across collections and reusability of content
by multiple applications.

While having a centralized university-wide repository application
is an attractive proposition, the diverse classes of digital objects
represented in the various collections pose several challenges.
The repository must be able to ingest and manage diverse
materials and the ingestion and management processes must be
able to scale to handle large volumes of content. In addition to
the preservation of the objects, the repository architecture must be
flexible enough to provide the appropriate hooks so that we can
design services that are capable of delivering the content in a
user-friendly manner to different user communities. For example,
digital objects from the Perseus project Classics collection that are
stored in the repository needs to be disseminated through complex
language tools developed by the Perseus project that link syntax,
grammar, and references to particular people and things across the
entire collection.[4] On the other hand, digital objects from the
TUSK collection require a completely different kind of
dissemination - one that resembles a courseware environment.
The modular and interoperable nature of the TDL architecture
allows us to use tools developed within one application such as
Perseus to be used on objects that belong to another application
such as TUSK. This makes TDL a powerful architecture that can
effectively use tools that have been developed by disparate
applications.

3.2 System Specifications
A modular system that meets the necessary functional
requirements of a long-term digital repository was considered as
the most suitable architecture for TDL. It had to be flexible and
extensible enough to meet the diverse storage and access needs of
data providers and application builders within the Tufts
community and in the potential federated digital library
community. Principles of “trusted digital repository” [5] and
OAIS guidelines were applied in arrangement of system the
architecture. Table 2. details the OAIS requirements along with
the matching system service.

Table 2. Requirements and system services.

Requirements System Services

Unique and persistent
identification of materials

Naming Service

Use of Archival Information
Packages (AIP)

Digital Object Provider (DOP)
Service

Use of Submission Information
Packages (SIP)

Drop Box, Ingestion Service

Use of Dissemination
Information Packages (DIP)

DOP Service

Authentication and integrity
checking

DOP Service

Dissemination Disseminators, Caching
Service, Digital Library
Application, Search Service

Access Search Service and other
applications

4. TDL Architecture

An architecture made of loosely coupled modular services
emerged as the solution that would be best suited to create a
flexible, extensible and scalable digital library that could subsume
our current digital libraries while allowing for future yet to be
determined applications. This model extends the framework
provided by the UVA implementation of FEDORA which forms
the core of TDL.

An architecture which addressed the issue of scalability by
defining a number of logical units and their relation in the context
of the digital library was devised. HTTP/HTTPS was chosen as
the communication protocol of choice between these units. This
choice allows use of wide array of server tools in the
implementation of each service with the prospect of using the
internet as the transport layer. Scalability was the main motivation
for minimizing the lines of dependency between the services in
the model.

Figure 1. TDL Architecture

Figure 1. shows the component services that comprise the TDL
architecture.

TDL was explicitly designed to facilitate the business processes
that are associated with the creation and use of the library. The
design of the component services was done in conjunction with
the design of the business processes associated with each service.
Each component was designed to effectively support the
corresponding business process and interface appropriately with
other components.

The architecture is comprised of five basic services.

• Drop Box and Ingestion Service provides a conduit for
objects to be uploaded into TDL. This does the
validation and tagging of the objects as part of the
preprocessing and then ingests the objects.

• Naming Service creates a unique persistent identifier
which is the Universal Resource Name (URN) for the
object. The service also resolves URNs.

• FEDORA Repository Service provides management of
and access to named digital objects

• Indexing and Search Service indexes the digital
objects and provides a search mechanism.

• Application Creation Service provides a mechanism
for external applications to interface with the repository.

4.1 Drop Box and Ingestion Service
The “Drop Box” as the name suggests is a location where users
can place digital objects that need to reside in TDL. It provides
temporary data storage during the pre-processing phase. The drop
box contains a template file provided by the archivists. The
template file has basic metadata which is associated with all
objects. The drop allows for association of additional metadata
with the objects. The drop box also tests for validity of object
types.

The Ingestion Service automatically collects the objects from the
Drop Box. It validates the FEDORA object schema and waits for
archivists to perform content quality review before approving or
rejecting objects based on archival standards. It calls the Naming
Service to obtain an URN for approved objects. It takes the
content, binds it with the associated metadata and prepares the
METS object, which is then ingested into FEDORA. It gets the
PID from FEDORA and calls the Naming Service to associate
PIDs with URNs. Finally it informs the contributors about the
success or failure of the attempt to ingest the object.

Figure 2. Ingestion Service

4.2 Naming Service
FEDORA provides a very limited system for referencing objects.
Every object in FEDORA is assigned a PID (Persistent Identifier)
in the format: “string:number”. This makes it difficult to track
and reference objects uniquely across collections. Furthermore
objects may move between FEDORA servers creating a need for
an identifier that is uniquely associated with the object,
independent of the repository in which it resides. The Naming
Service creates a URN. It also creates a binding between the URN
and the FEDORA PID and provides a resolution service to locate
the object.

The convention developed for the TDL URN is as follows:

tufts:school name:owner:[collection:]item name.

The first field of the URN created through this service is always
tufts. The second field is ‘project name’ which is unique for any
project registered through this service. If an object is not
associated with a project, it is allocated to the default project.
‘collection’ is an optional field provided by the projects.
Collection helps further classify repositories in a project. ‘item
name’ can be provided by the project/repository
owners/contributors or it will be created by the service. The URN
formed by combining these four fields is guaranteed to be unique.

4.3 FEDORA Repository Service
The FEDORA Repository Service forms the core of TDL. The
key features of the architecture are: (1) support for heterogeneous
data types; (2) accommodation of new types as they emerge; (3)
aggregation of mixed, possibly distributed, data into complex
objects; (4) the ability to specify multiple content disseminations
of these objects; and (5) the ability to associate rights
management schemes with these disseminations.
The following sections describe TDL’s implementation of the
repository model, objects, behaviors and disseminators and
custom modifications.

4.3.1 Repository Model
TDL’s implementation of FEDORA is a modification of the
implementation developed by the University of Virginia.
Modifications were necessary to create a fast and efficient
production system. Figure 3. details the different components of
the repository model.

Figure 3. The Repository Model

4.3.2 Objects, Behaviors and Disseminators
Each object in the repository is identified with a particular
content-type. Consistent with the FEDORA model each content
type in the repository has a set of associated behaviors and
disseminators. Following is the list of content types that are
supported in TDL.

• TUFTS_STD_IMAGE

• XML_TO_HTMLDOC

• TUFTS_BINARY_FILE

• TUFTS_VUE_CONCEPT_MAP

• TUFTS_COLLECTION

All content types contain disseminators supported by FEDORA’s
Behavior Definition (bdef) fedora-system:3 and demo:277, which
is a Behavior Definition to support indexing. FEDORA-system:3
supports few basic disseminators like getObjectProfile,
viewObjectProfile, getMethodIndex, viewMethodIndex,
getItemIndex, viewItemIndex, getItem, getDublinCore,
viewDublinCore [14]. Additional Behavior Definitions and
Disseminators were linked to the content types to make the
objects usable by the applications. Tables 3-7 show the
association of content types with FEDORA behaviors and
disseminators that have been developed for TDL.

Dissemination Description

getThumbnail Returns thumbnail sized image
(120 x 120 pixels).

getImage Returns image in jpeg or gif
format.

getStandard Gets a screen size of the image
(650-850 pixel width).

getResized Returns image with specified
width and height.

getZoomedImage Returns image specified
magnification.

getImageTile Returns a tile of image
specified by location x, y and
dimensions width and height.

Table 3. Dissemination Index for TUFTS_STD_IMAGE

Dissemination Description

getXML Returns the content of
document in raw XML format.

getTOC Returns the Table of Content

getInfo Returns basic information
about the document.

getDocument Returns the document in
browse-able format.

getChunk Returns the specified chapter
from the document.

Table 4. Dissemination Index for XML_TO_HTMLDOC

Dissemination Description

getFile Returns the binary file.

Table 5. Dissemination Index for TUFTS_BINARY_FILE

Dissemination Description

getConceptMap Returns the concept Map
generated and used by VUE.

getManifest Returns the manifest file
describing the content in VUE
concept map.

getResource Returns the specified resource
used by VUE concept map.

Table 6. Dissemination Index for
TUFTS_VUE_CONCEPT_MAP

Dissemination Description

getCollType

Given the collection and object
type, returns the objects in the
collection of specified type.

getCollResources Given a collection ID get a list
of the objects in that collection
(i.e. texts, images, audio,
video, etc.).

Table 7. Dissemination Index for TUFTS_COLLECTION

4.3.3 Implementation Challenges
Certain enhancements had to be made to the out-of-the box
FEODORA to increase the speed and efficiency of
disseminations.

4.3.3.1 Caching Vs. Preprocessing
The processing of most source files within the digital library is a
computationally intensive process. Initial tests indicated that the
system would not scale well with all the processing done in real
time. A demand-driven caching service and a full preprocessing
upon ingestion mechanism were considered as possible solutions.

Full preprocessing requires significant computational power and
large quantities of storage. The branching complexity of the
parameterized disseminators spanned an infinite tree of
possibilities. Though there are no off-the-shelf products that
support full preprocessing, preprocessing of small subset of
frequently used disseminations was possible. Partial
preprocessing was used in conjunction with Squid, which is an on
demand caching service to increase the speed and efficiency of
disseminations.

4.3.3.2 Internal Cache Vs. External Cache
TDL uses an internal caching mechanism, where the
data/disseminations are cached within the repository. Unlike an
external cache, where data is cached by applications that interface
with the repository, internal cache allows full control over the
caching process and guarantees that the cache will always reflect
the true state of the objects. Internal cache cannot be bypassed by
applications using TDL thus blocking malicious code that may
potentially overload processing server. In addition the TDL
internal caching server preprocesses parts of collections, monitors
and logs traffic, isolates some processing services for
maintenance without service interruptions, etc.

4.4 Indexing Service and Search Engine
TDL provides an indexing and search mechanism for accessing its
content. Users may access the content using the no-frills user
interface provided by this service. External applications can
interface with the hooks specifically provided by the service for
this purpose. The search application uses Lucene 1.3 which is a
widely used open-source search engine supported by the Jakarta
project.
To provide a way for the search engine to index the objects within
TDL, a series of disseminators which expose the textual content
of an object in a search engine friendly format were developed.
This customization allows use of additional types of search not
supported by the basic FEDORA search.

These disseminators are polymorphic in nature allowing the
search engine to index all digital library objects in a type-neutral
manner. Every object supports the getForIndexing and
getPreview disseminators which serve as hooks for the search
engine. The indexing process does not differentiate between
document-types since all of them provide the same indexing
disseminators. All objects subscribe to the same indexing
behavior definition. The disseminators are implemented in
different ways across the different object types through type-
specific behavior mechanisms.

4.4.1 Indexing
The disseminator getForIndexing is accessed via HTTP GET or
SOAP request. It returns HTML page containing the metadata and
content of digital objects. Following example demonstrates the
use of disseminator.

Example

Disseminator call:
http://hosea.lib.tufts.edu:8080/FEDORA/get/tufts:1/demo:277/get
DocumentForIndexing/

HTML page return on above call:

<html>
 <head>
 <meta http-equiv="Content-Type"
content="text/html; charset=utf-8">
 <meta name="title" content="John
Holmes, March 13, 1935">
 <title>John Holmes, March 13,
1935</title>
 <meta name="subject"
content="Faculty">
 <meta name="subject" content="Holmes,
John A. (1904-62)">
 <meta name="subject" content="John A.
Holmes, papers">
 <meta name="subject" content="People">
 <meta name="subject"
content="Portraits">
 <meta name="date" content="1935">
 <meta name="type" content="image">
 <meta name="format"
content="image/tiff">
 <meta name="identifier"
content="tufts:1">
 <meta name="relation"
content="collection:TuftsHistory">
 <meta name="relation"
content="text:2000.04.0015">
 </head>
 <body><img
src="../../demo:60/getThumbnail/"></body>
</html>

The Dublin Core metadata returned by the disseminator that
performs indexing is in the header of HTML document. This
enables the indexing feature to be easily used by any search
engine that supports metadata search. A successful
implementation was carried out using Google’s search engine.

This type of indexing enables not only metadata and full-text
search but also advanced searches such as the ability to use
metadata filters and date based search.

Indexing for all digital objects in the repository can be done every
night or by specific request. Indexing can also be performed on
collections or smaller sets objects.

4.4.2 Processing Search Results
Hits returned on conducting any type of search (metadata, full-
text or advanced) have a tagged reference to the getPreview
disseminator. All the digital objects have the getPreview
disseminator to display the snapshot. Like all disseminators,
getPreview, can be accessed by HTTP GET/POST or by using a
SOAP request.

4.5 Application Creation Service
An important design requirement for TDL was to allow current
digital library applications to easily interface with TDL and
provide access to the content in the digital library within their
own environments in a seamless fashion. The Application
Creation Service was designed to address this need. Current
applications like Perseus can interface with this service to allow
their tools to disseminate the content that resides in TDL. This
mechanism allows application providers to combine the power the
repository system with their individual applications. The service
has been designed not only to support current application but also
to accommodate the needs of future yet-to-be-defined applications
like course management systems, learning tools, portals etc.

5. Applications Accessing TDL Content

Two applications - Tufts DL Search and Visual Understanding
Environment (VUE) have been developed at Tufts that use the
content from TDL.

5.1 Tufts DL Search
The requirements and specifications of the search application
were initially conceived out of our research and experimental
implementations of the search applications developed by the
Perseus Project [23]. The primary purpose of this first
implementation of the search application is to promote resource
discovery within the digital repository for a wide audience, i.e.
the user community of the digital library application. Since the
Tufts repository will always contain an ever increasing and
diverse set of digital objects and object types it was important to
develop a system that would take advantage of the rich object
metadata that is encoded in the FEDORA Repository Service and
indexed by the repository's search engine. Every object in the
digital repository supports disseminators that serve as hooks for
the search engine. Once these disseminators are activated all
objects in the digital repository are indexed in a type-neutral
manner and essentially create large pool of data against which
basic information discovery queries using any search application
can be run.

In order to discover and query objects in the digital repository
through the Tufts Digital Library generic search application was
developed that provides two initial levels of searching

capabilities: a "basic search", and an "advanced search." The
basic search function provides a means for searching either the
full-text or the metadata of digital objects in the repository. The
advanced search provides a means for searching both full-text and
metadata of digital objects in the repository. The advanced search
also provides an interface for field-based searching of metadata,
as well as various types of results sorting. Figure 5 and 6 show
screen shots of advanced search and the search result page
respectively.

The general functions of the Perseus search engines have been be
adapted to the new digital repository and there are plans to
continue to develop and implement specific aspects of the Perseus
Project work such as clustered searching, bi-directional searching,
language related search tools, and DTD tag based searching of
full-texts. The behavior centric nature of the FEDORA repository
facilitates the process of building such search applications
because FEDORA provides the hooks needed to disseminate data
from different objects types.

Figure 5. Screenshot of Tufts DL Search

Figure 6. Screenshot of Tufts DL Search displaying preview

of object.

5.2 VUE
5.2.1 Concept Map to Content Map
Digital Libraries have enabled academic communities to access
large amounts of digital information which may be used as part of
course materials. As the quantity of digital information continues
to grow, there is a need for flexible tools to help people organize,
make sense of and apply digital information to teaching, learning
and problem solving. Concept maps have had a long and fruitful
history in education as they provide visual representations of
complex ideas or process, their contributing processes and the
ways in which these elements are connected or related. Visual
Understanding Environment (VUE) [4] extends the functionality
of traditional concept mapping applications by allowing users to
map against and draw from persistent collections of content
contained within digital libraries. This integrated digital library
application transforms ordinary concept maps into content maps.
In support of teaching, it provides faculty with a visual means to
semantically structure and create pathways through digital
materials in a manner most consistent with the ideas and concepts
they must communicate to their students. Figure 7. presents a
screenshot of VUE.

Figure 7. Screenshot of VUE

5.2.2 VUE : connecting to TDL
The technical design of VUE incorporates all relevant application
programming interfaces (API) developed at MIT as part of the
Open Knowledge Initiative (OKI) to maximize the utility of this
tool within environments beyond Tufts. The VUE architecture is
shown in the figure 8. The repository management subsystem is at
the heart of VUE, as it provides interaction with persistent
collections of digital materials, local and remote file systems.
VUE implements the File and Content Management APIs to
support communication between the VUE, file systems and digital
repositories.

VUE

OKI

FEDORA

DR
API

Digital
Repository

OKI-FEDORA Bridge

Technical Infrastructure

DR Implementations

Digital
Repository

VUE Architecture

Figure 8. VUE Architecture

Users of VUE can add and modify content of TDL based on the
privileges they have on resources. Authentication and
Authorization is performed through Tufts LDAP by an
implementation of OKI’s Authentication and Authorization APIs.
Authorization part will be moved to repository level when
FEDORA implements it in their next release.

Communication with the repository happens through FEDORA-
OKI Bridge. The object model of resources in VUE which is an
implementation of OKI’s dr.Asset interface closely maps to the
object model in TDL.

VUE is developed in JAVA and the communication happen
through SOAP calls that are supported by TDL. Thus the
modular approach and support for SOAP and HTTP GET/POST
bindings by TDL makes the integration very simple.

6. Conclusion and Future Work

Tufts University’s quest to architecting an extensible digital
library that can support current digital library applications and
future needs resulted in a design that uses the FEDORA
architecture at its core. While FEDORA is an excellent digital
repository architecture, it needs customization and enhancements
to produce a complete digital library solution that addresses a
wide variety of needs.
A range of services developed and implemented as part of the
Tufts Digital Library provide the necessary infrastructure to
manage, disseminate and create persistent collections of a large
number of digital objects. A customized caching implementation
was used to enhance the basic FEDORA repository service that
helped augment the speed and efficiency of dissemination.
TDL is designed to interface with applications that need to use the
content of the repository. VUE and TDL Search are examples of
applications that have been able to successfully use the content of
the repository.

In the future we hope to use TDL as the repository to host objects
from Perseus, TUSK and Artifact and to allow for seamless
integration with the existing applications. Other services such as
authentication and authorization which are proposed in future
releases of FEDORA will be integrated into TDL as an when they
become available.

7. References

[1] Staples, Thornton and Wayland, Ross: Virginia Dons

FEDORA: A Prototype for Digital Repository. DLib
Magazine 6, 7/8 (July/August 2000)

[2] Payette, Sandra and Lagoze, Carl: Flexible and Extensible
Digital Object Repository Architecture, in Christos Nikolau
and Constantine Stephanidis, eds., Research and Advanced
Technologies for Digital Libraries: Proceedings of Second
European Conference, ECDL ’98, Heraklion, Crete,Greece,
September 21-23, 1998, G. Goos, J. Hartimis and J.
vanLeeuwen, eds., Lecture Notes in ComputerScience, 1513
(Berlin: Springer, 1998)
http://www.cs.cornell.edu/payette/papers/ecdl98/FEDORA.h
tml

[3] Lagoze, Carl: The Warwick Framwork: A container
Architecture for Diverse sets of Medata

[4] David Kahle, Anoop Kumar, Ranjani Saigal: Visual
Understanding Unvironment, Syllabus Fall Conference
2003.

[5] Trusted Digital Libraries: Attributes and Responsibilities,
RLG, May 2002

[6] Reference Model for an Open Archival Information System
(OAIS). Blue Book. Issue 1. January 2002

[7] Open Knowledge Initiative. http://web.mit.edu/oki/
[8] URN Syntax. http://web.mit.edu/rfc/rfc2141.txt
[9] Functional Requirements for Uniform Resource Names.

http://web.mit.edu/rfc/rfc1737.txt

[10] A trivial Convention for using HTTP in URN resolution.
http://web.mit.edu/rfc/rfc2169.txt

[11] PURLs. http://www.purl.org/
[12] Harvard University Library LDI.

http://hul.harvard.edu/ldi/index.html
[13] Making of America II. http://sunsite.berkeley.edu/moa2/
[14] FEDORA Project. http://www.FEDORA.info
[15] Gregory Crane, Clifford E. Wulfman, Lisa M. Cerrato, Anne

Mahoney, Thomas L. Milbank, David Mimno, Jeffrey A.
Rydberg-Cox, David A. Smith, and Christopher York.
Towards a cultural heritage digital library. In Proceedings of
the 3rd ACM/IEEE-CS Joint Conference on Digital
Libraries, JCDL 2003, pages 75-86, Houston, TX, June 2003

[16] Gregory Crane, David A. Smith, and Clifford E. Wulfman.
Building a hypertextual digital library in the humanities: A
case study on London. In Proceedings of the First
ACM+IEEE Joint Conference on Digital Libraries, pages
426-434, Roanoke, VA, 24-28 June 2001.

[17] Bruce A. Metz, Mary Y. Lee, Susan Albright, and Tarik
Alkasab, "Transforming Medical and Health Science
Education at Tufts University", EDUCAUSE Quarterly
(Volume 24, Number 4)

[18] Artifact Project, Tufts University http://artifact.tufts.edu
[19] Crime and Punishment. http://at.tccs.tufts.edu/apps/candp/
[20] Kahn, Robert and Wilensky, Robert: A framework for

Distributed Digital Object Services, May 1995.
http://www.cnri.reston.va.us/home/cstr/arch/k-w.html

[21] Dublin Core. http://www.dublincore.org/
[22] Lucene. http://jakarta.apache.org/lucene/docs/index.html
[23] Anne Mahoney. Explicit and implicit searching in the

Perseus digital library. In Einat Amitay, editor, Information
Doors: Pre-Conference Workshop at the Eleventh ACM
Conference on Hypertext and Hypermedia, 2000.

	Introduction
	Related Work
	Designing the Tufts Digital Library
	Need for a New Architecture
	System Specifications

	TDL Architecture
	Drop Box and Ingestion Service
	Naming Service
	FEDORA Repository Service
	Repository Model
	Objects, Behaviors and Disseminators
	Implementation Challenges
	Caching Vs. Preprocessing
	Internal Cache Vs. External Cache

	Indexing Service and Search Engine
	Indexing
	Processing Search Results

	Application Creation Service

	Applications Accessing TDL Content
	Tufts DL Search
	VUE
	Concept Map to Content Map
	VUE : connecting to TDL

	Conclusion and Future Work
	References

